Section 01: Introduction | |||
Introduction to Supervised Machine Learning | 00:06:00 | ||
Section 02: Regression | |||
Introduction to Regression | 00:13:00 | ||
Evaluating Regression Models | 00:11:00 | ||
Conditions for Using Regression Models in ML versus in Classical Statistics | 00:21:00 | ||
Statistically Significant Predictors | 00:09:00 | ||
Regression Models Including Categorical Predictors. Additive Effects | 00:20:00 | ||
Regression Models Including Categorical Predictors. Interaction Effects | 00:18:00 | ||
Section 03: Predictors | |||
Multicollinearity among Predictors and its Consequences | 00:21:00 | ||
Prediction for New Observation. Confidence Interval and Prediction Interval | 00:06:00 | ||
Model Building. What if the Regression Equation Contains “Wrong” Predictors? | 00:13:00 | ||
Section 04: Minitab | |||
Stepwise Regression and its Use for Finding the Optimal Model in Minitab | 00:13:00 | ||
Regression with Minitab. Example. Auto-mpg: Part 1 | 00:17:00 | ||
Regression with Minitab. Example. Auto-mpg: Part 2 | 00:18:00 | ||
Section 05: Regression Trees | |||
The Basic idea of Regression Trees | 00:18:00 | ||
Regression Trees with Minitab. Example. Bike Sharing: Part 1 | 00:15:00 | ||
Regression Trees with Minitab. Example. Bike Sharing: Part 2 | 00:10:00 | ||
Section 06: Binary Logistics Regression | |||
Introduction to Binary Logistics Regression | 00:23:00 | ||
Evaluating Binary Classification Models. Goodness of Fit Metrics. ROC Curve. AUC | 00:20:00 | ||
Binary Logistic Regression with Minitab. Example. Heart Failure: Part 1 | 00:16:00 | ||
Binary Logistic Regression with Minitab. Example. Heart Failure: Part 2 | 00:18:00 | ||
Section 07: Classification Trees | |||
Introduction to Classification Trees | 00:12:00 | ||
Node Splitting Methods 1. Splitting by Misclassification Rate | 00:20:00 | ||
Node Splitting Methods 2. Splitting by Gini Impurity or Entropy | 00:11:00 | ||
Predicted Class for a Node | 00:06:00 | ||
The Goodness of the Model – 1. Model Misclassification Cost | 00:11:00 | ||
The Goodness of the Model – 2 ROC. Gain. Lit Binary Classification | 00:15:00 | ||
The Goodness of the Model – 3. ROC. Gain. Lit. Multinomial Classification | 00:08:00 | ||
Predefined Prior Probabilities and Input Misclassification Costs | 00:11:00 | ||
Building the Tree | 00:08:00 | ||
Classification Trees with Minitab. Example. Maintenance of Machines: Part 1 | 00:17:00 | ||
Classification Trees with Miitab. Example. Maintenance of Machines: Part 2 | 00:10:00 | ||
Section 08: Data Cleaning | |||
Data Cleaning: Part 1 | 00:16:00 | ||
Data Cleaning: Part 2 | 00:17:00 | ||
Creating New Features | 00:12:00 | ||
Section 09: Data Models | |||
Polynomial Regression Models for Quantitative Predictor Variables | 00:20:00 | ||
Interactions Regression Models for Quantitative Predictor Variables | 00:15:00 | ||
Qualitative and Quantitative Predictors: Interaction Models | 00:28:00 | ||
Final Models for Duration and TotalCharge: Without Validation | 00:18:00 | ||
Underfitting or Overfitting: The “Just Right Model” | 00:18:00 | ||
The “Just Right” Model for Duration | 00:16:00 | ||
The “Just Right” Model for Duration: A More Detailed Error Analysis | 00:12:00 | ||
The “Just Right” Model for TotalCharge | 00:14:00 | ||
The “Just Right” Model for ToralCharge: A More Detailed Error Analysis | 00:06:00 | ||
Section 10: Learning Success | |||
Regression Trees for Duration and TotalCharge | 00:18:00 | ||
Predicting Learning Success: The Problem Statement | 00:07:00 | ||
Predicting Learning Success: Binary Logistic Regression Models | 00:16:00 | ||
Predicting Learning Success: Classification Tree Models | 00:09:00 | ||
Order Your Certificate | |||
Order Your Certificate Now | 00:00:00 |
Upgrade to get UNLIMITED ACCESS to ALL COURSES for only £99/year
Claim Offer & UpgradeMembership renews after 12 months. You can cancel anytime from your account.